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Abstract
Density functional theory (DFT), when applied to systems with T �= 0, is based
on the grand canonical extension of the Hohenberg–Kohn–Sham theorem due to
Mermin (HKSM theorem). While a straightforward canonical ensemble (CE)
generalization fails, work in nanopore systems could certainly benefit from a
mesoscopic DFT in the CE. We show that, if the asymptotic behaviour of the
canonical distribution functions is taken into account, the HKSM theorem can
be extended to the CE. We generate N -modified correlation and distribution
functions hierarchies, show that their functional relationship is equivalent to
the one holding between the more conventional ones and prove that, if they
are employed, either a modified external field or the density profiles can
be indistinctly used as independent variables. We also write down the N -
modified free energy functional and prove that its minimum is reached when the
equilibrium values of the new hierarchy are used. This completes the extension
of the HKSM theorem.

Density functional theory (DFT) is, undoubtedly, one of the more reliable and established
tools in condensed matter theory. It has successfully been used in an ample variety of classical
systems [1] as, e.g., uniform and non-uniform systems in simple [2, 3] and general [4] fluids,
confined fluids [5, 6], melting and freezing [7], interfaces [8], etc as well as in the calculation
of electronic properties in all kinds of systems [9]. This impressive work directly descends
from the pioneering work of Hohenberg, Kohn and Sham [10] and its extension to non-zero
temperature for systems described in the grand canonical ensemble (GCE) by Mermin [11].
Roughly speaking, the HKSM theorem states that, either the external potential or the density
profile can indistinctly be used as independent variables and that the thermodynamic grand
potential reaches its minimum when the equilibrium density profile is used. Therefore, it is in
the foundation of all sort of variational principles. The failure to implement a straightforward
CE extension is already well known, referred to in [6] (where a GCE series expansion was
done and an approximate density profile for the CE obtained), and can be traced back to the
fixed N constraint (see equation (8)). In fact, years ago, Ramshaw [12] explicitly worked out
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the two-body Ornstein-Zernike (OZ) equation for a one-component system in the CE if the
pair correlation function h(r) is stripped off of its asymptotic behaviour. As the GCE is an
extension of the CE, an obvious question is where the need for such an implementation exists.
With respect to that point, we can mention that experiments done in porous glasses (mean
pore radius ≈ 20–30 Å) [13], simulations [14] and DFT studies [5, 6] show the interest of
having a mesoscopic DFT in the CE in order to study the statistical mechanics of finite closed
systems like fluids in spherical pores [6]. Although the extension of Ramshaw’s work [12] to
mixtures is not very complicated, we prefer, in this letter, to focus our attention on a physically
far reaching question; i.e. how can his results be used (while keeping the technicalities to
the barest minimum) in order to extend the HKSM theorem to the CE? We will prove two
main results: (i) that, by stripping the canonical correlation functions off of their asymptotic
behaviour, anN -modified set of distribution and correlation function hierarchies is generated;
(ii) by introducing an N -modified free energy and showing that it is minimized by the N -
modified density profile we prove the extension of the HKSM theorem to the CE. In this way,
variational principles formulated in the CE have a firm foundation if theN -modified functions
are used in them. Specifically, we consider a one-component system withN particles in a box of
volume V with a one body external potential V (1)(x). After summarizing Ramshaw’s method,
we show that his procedure defines (through functional derivatives of the canonical partition
function QN with respect to a modified external potential (equation (16))) a hierarchy of n-
body direct and total correlation functions which are related through n-body OZ equations. The
physical idea is the same one that shows up in almost every textbook on statistical mechanics
when going from the CE to the GCE. There an open subset is considered, here we strip the
canonical correlation functions off its asymptotic behaviour. The difference is that, for us,
this is the fundamental step, not an intermediate one. We are then able to prove that this step
is described, to any n-body order, by functional derivatives with the right formal structure.
This proves point (i) and paves the way to the HKSM theorem. Let us emphasize that, as any
successful theory of liquids needs to consider all the correlation functions, a valid OZ equation
for the pair functionsh and c is not good enough to extend DFT to the CE. Therefore, we need to
prove that we actually have a set ofN -modified hierarchies obtained through the same formal
scheme of equations (2), (4) and (5) and that they are, indeed, linked by n-body OZ equations.

As usual [1], the distribution functions and full distribution functions, the truncated
correlation functions associated to them and direct correlation function hierarchies (n(s)({x}),
n̂(s)({x}), t (s)({x}), t̂ (s)({x}) and c(s)({x}) respectively) can be defined by functional derivatives
as

n(s)({x}) =
∏s
k=1 e

�(xk)

QN

δsQN∏s
k=1 δe

�(xk)
(1)

n̂(s)({x}) = 1

QN

δsQN∏s
k=1 δ�(xk)

(2)

t (s)({x}) =
s∏
k=1

e�(xk)
δs lnQN∏s
k=1 δe

�(xk)
(3)

t̂ (s)({x}) = δs lnQN∏s
k=1 δ�(xk)

= δt̂ (s−1)({x1, . . . ,xs−1})
δ�(xs)

(4)

c(s)({x}) = β
δsF exc∏s

k=1 δn
(1)(xk)

= δc(s−1)({x1, . . . ,xs−1})
δn(1)(xs)

(5)

where {x} = (x1, . . . ,xs) is the coordinate set, β = 1/kT , Fexc the excess free energy and
�(x) = −βV (1)(x). In the GCE the grand partition function � replaces QN . We consider
the full distribution and correlation functions n̂(s), t̂ (s) as the fundamental quantities (together
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with c(s)) because they not only pinpoint the problems in the CE, is through these functions
that we solve them and no new information can be got from the other functions. Obviously,
n(1) = n̂(1) = t (1) = t̂ (1) and

δn(1)(x) =
∫
t̂ (2)(x,y)δ�(y)dy. (6)

It is clear that, up to now, the independent variables are the external fields and, in the more usual
notation is t̂ (2)(x,y) = t (2)(x,y) + n(1)(x)δ(x − y), t (2)(x,y) = n(1)(x)n(1)(y)h(2)(x,y).
If the density profile n(1) can also be used as an independent variable, then an inverse kernel
t̂ (2)−1(z,x) = δ�(z)/δn(1)(x) must exist such that∫

t̂ (2)
−1
(z,x)t̂ (2)(x,y)dx = δ(z − y). (7)

Using the definition of the pair distribution function in both ensembles [1], the normalization
integral is

∫
t̂ (2)(x,y)dy =




0 CE

n(1)(x)

[
1 +

∂ ln(n(1)(x)/z)

∂ ln z

]
GCE

(8)

Eqs. (7) and (8) are obviously incompatible in the CE while, because of the fluctuations, there
is no incompatibility in the GCE and the kernel t̂ (2) is invertible. Therefore, the OZ equation
(obtained when c(2)(z,x) is defined by equation (17)) is, mathematically speaking, undefined
in the CE and, in that framework, no rigorous DFT is possible.

The irreducible two-body behaviour is exclusively described by h(2) and we will analyse
its asymptotic behaviour. The conditional probability of finding a particle in x when another
one is fixed in y can be written, when x and y are very far away, as

n∞(x|y) = n(1)(x) +
∂n(1)(x)

∂ρ
�φ(y). (9)

Here �φ(y) is an unknown proportionality factor and, by symmetry

h(2)∞ (x,y) = �(2)
∂ ln n(1)(x)

∂ρ

∂ ln n(1)(y)

∂ρ
(10)

�(2) is an as yet unknown constant and we can define an N -modified correlation function h̃(2)

as the correlation function stripped off of its asymptotic behaviour. More precisely,

h(2)(x,y) =


h̃(2)(x,y) + �(2)

∂ ln n(1)(x)

∂ρ

∂ ln n(1)(y)

∂ρ
x �= y

h̃(2)(x,y) = −1 x = y

. (11)

As the stripping is done through a separation of variables the irreducible two-body component
is not affected, only the long range behaviour (due to the fixed N constraint) is isolated. As a
consequence, h̃(2) is the correlation function with a truly irreducible two-body behaviour, not
h(2), and excluded volume effects are not altered. Therefore, we can define anN -modified full
truncated correlation function

t̃
(2)
αλ (x,y) =



t̂ (2)(x,y)− �(2)

∂ ln n(1)(x)

∂ρ

∂ ln n(1)(y)

∂ρ
x �= y

t̂ (2)(x,y) x = y

(12)
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and verify that it satisfies∫
t̃ (2)(x,y)dxdy = −�(2)V 2 (13)

This shows that t̃ (2) is indeed invertible. Also, �(2) can be written as a functional of h̃(2)

�(2) = − 1

V 2

∫
dxn(1)(x)

[
1 +

∫
dyn(1)(y)h̃(2)(x,y)

]
(14)

i.e., like a sort of averaged compressibility and thus recover the classical Lebowitz–Percus
results [15]. Replacing equation (12) in (6) and using the chemical potential definition we
define a modified external field �̃ and write that

δn(1)(x) =
∫
t̃ (2)(x,y)δ�̃(y)dy (15)

δ�̃(y) = δ�(y) + βδµ. (16)

If we write that, by definition,

t̃ (2)−1(z,x) = δ�̃(z)

δñ(1)(x)
= −c̃(2)(z,x) +

δ(z − x)

ñ(1)(x)
(17)

the N -modified functions t̃ (2)−1, t̃ (2) obey equation (7) and, therefore, h̃(2) and c̃(2) are linked
by an OZ equation with c̃(2) playing the role of an N -modified direct correlation function.

These are essentially Ramshaw’s results. For the three-body functions we can start from
their normalization integrals and repeat the above procedure. However, this does not lead us
to easily prove that we have a hierarchy of N -modified functions. On the other hand, the
functional differentiation procedure shows very clearly that, if continued, N -modified sets of
distribution and correlation functions hierarchically related are generated. That can be seen by
analysing the three bodies case. In the GCE we have that both t̂ (3) and t̂ (3)

−1
can be obtained

by functional differentiation of t̂ (2) and t̂ (2)
−1

with respect to � and n(1) respectively and, in
doing that, c(3) is generated [16]. In general, the procedure for finding the first p OZ eqs.
is to perform a Taylor functional expansion of both n(1) and � as a functional of each other,
substitute one series into the other and equate equal order terms up to order p. In this way, the
three-body OZ equation is

t̂ (3)
−1
(s,u, v) = −

∫
dxdydzt̂ (2)−1(s,x)t̂ (3)(x,y, z)t̂ (2)−1(y,u)t̂ (2)−1(z, v). (18)

If we now turn to the CE, δ/δ� is replaced by δ/δ�̃, t̂ (2)
−1

by t̃ (2)−1 and, as the derivatives are
with respect to �̃ it implies that the same must hold for the three-body functions. Therefore, it
is (hierarchically) proved that the N -modified hierarchies t̃ and c̃ are generated by functional
differentiation (through the operators δ/δ�̃ and δ/δn ) and are linked by n-body OZ equations.

Now we define an N -modified intrinsic free energy functional by

βF̃
[
ñ(1)

] = 〈β(KN + UN − lnPN)〉 (19)

where KN,UN, PN are the N -body kinetic, potential energy and probability distribution
function in the CE and minimize the functional

β%̃
[
ñ(1)

] = −
∫
ñ(1)(x)�̃(x)dx + βF̃

[
ñ(1)

]
. (20)

The need for a full hierarchy of correlation functions lies in the entropic term lnPN . It is
easy to prove, using the Gibbs–Bogoliubov inequality [1], that the minimum is reached when
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the equilibrium profile ñ(1) is used. This completes the proof of the extension of the HKSM
theorem to the CE. As theN -modified direct correlation function hierarchy {c̃(s)} can be started
by

c̃(1)(x) = β
δF̃ exc

[
ñ(1)

]
δñ(1)(x)

we have proved that all of our N -modified functions can be generated by functional
differentiation recipes having the formal structure as of equations (2), (4) and (5).

Summarizing, we have shown that a new hierarchical set of N -modified distribution and
correlation functions can be built using the same rules and formal structure of the conventional
canonical functions with the proviso that the modified external fields must be used in order to
strip them off of their asymptotic behaviour. Using these functions we have also proved that
the HKSM theorem of the GCE can be extended to the CE. In a forthcoming paper a detailed
derivation that includes mixtures will be published.

We acknowledge support from the National Science Foundation through grants CHE-95-13558,
Epscor OSR-94-52893, by the DOE-EPSCoR grant DE-FCO2-91ER75674 and CONICET
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